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Abstract
We have investigated the advection of a passive scalar quantity by an
incompressible helical turbulent flow in the framework of an extended
Kraichnan model. Turbulent fluctuations of velocity field are assumed to
have the Gaussian statistics with zero mean and defined noise with finite time
correlation. Actual calculations have been done up to two-loop approximation
in the frame of field-theoretic renormalization group approach. It turned out
that space parity violation (helicity) of a turbulent environment does not affect
anomalous scaling which is a peculiar attribute of the corresponding model
without helicity. However, stability of asymptotic regimes, where anomalous
scaling takes place, strongly depends on the amount of helicity. Moreover,
helicity gives rise to the turbulent diffusivity which has been calculated in the
one-loop approximation.

PACS numbers: 47.27.−i, 47.10.+g, 05.10.Cc

1. Introduction

During the last decade much attention has been paid to the inertial range of fully developed
turbulence which contains wave numbers larger than those that pump the energy into the system
and smaller enough than those that are related to the dissipation processes [1]. Grounding of

0305-4470/06/257913+14$30.00 © 2006 IOP Publishing Ltd Printed in the UK 7913

http://dx.doi.org/10.1088/0305-4470/39/25/S08
mailto:hnatic@saske.sk
http://stacks.iop.org/JPhysA/39/7913


7914 O G Chkhetiani et al

the inertial range turbulence has been created in the well-known Kolmogorov–Obukhov (KO)
phenomenological theory (see, e.g., [1–3]). One of the main problems in the modern theory
of fully developed turbulence is to verify the validity of the basic principles of the KO theory
and their consequences within the framework of a microscopic model. Recent experimental
and theoretical studies indicate possible deviations from the celebrated Kolmogorov scaling
exponents. The scaling behaviour of the velocity fluctuations with exponents whose values are
different from the Kolmogorov ones, is called anomalous and is usually associated with the
intermittency phenomenon. The deviations, referred to as ‘anomalous’ or ‘non-dimensional’
scaling, manifest themselves in singular (arguably power-like) dependence of correlation
or structure functions on the distances and the integral (external) turbulence scale L. The
corresponding exponents are certain nontrivial and nonlinear functions of the order of the
correlation function, the phenomenon referred to as ‘multiscaling’.

Although the theoretical description of the fluid turbulence on the basis of the ‘first
principles’, i.e., on the stochastic Navier–Stokes (NS) equation [1] remains essentially an
open problem, considerable progress has been achieved in understanding simplified model
systems that share some important properties with the real problem. The crucial role in these
studies is played by the models of advected passive scalar field [5]. A simple model of a passive
scalar quantity advected by a random Gaussian velocity field, white in time and self-similar
in space, the so-called Kraichnan’s rapid-change model [6], is an example. There, for the first
time, the anomalous scaling was established on the basis of a microscopic model [8], and the
corresponding anomalous exponents were calculated within controlled approximations [9, 10]
(see also review [4] and references therein).

The greatest stimulation to study the simple models of passive advection not only of
scalar fields but also of vector fields (e.g., weak magnetic field) is related to the fact that
even simplified models with given Gaussian statistics of the so-called ‘synthetic’ velocity
field describe a lot of features of anomalous behaviour of genuine turbulent transport of some
quantities (as heat or mass) observed in experiments (see, e.g. [7–11] and references cited
therein).

The term ‘anomalous scaling’ reminds of the critical scaling in models of equilibrium
phase transitions. In those, the field theoretic methods were successfully employed to
establish the existence of self-similar (scaling) regimes and to construct regular perturbative
calculational schemes (the famous ε expansion and its relatives) for the corresponding
exponents, scaling functions, ratios of amplitudes etc (see, e.g. [12, 13]). Here and below, by
‘field theoretic methods’ we mean diagrammatic and functional techniques, renormalization
theory and renormalization group, composite operators, operator-product expansion and so on
[13].

The feature specific to the theory of turbulence and simplified models associated with it
is the existence in the corresponding field theoretical models of the composite operators with
negative scaling (critical) dimensions. Such operators, termed ‘dangerous’ in [14–18], give
rise to the anomalous scaling, i.e., the singular dependence on the infrared (IR) scale L with
certain nonlinear anomalous exponents.

Important advantages of the RG approach are its universality and calculational efficiency:
regular systematic perturbation expansion for the anomalous exponents was constructed which
is similar to the well-known ε-expansion in the theory of phase transitions, and the exponents
were calculated in the first order of expansion for passively advected vector fields [19, 20] and
in the second [14] and third [16] orders of that expansion for scalar fields. Furthermore, the
RG approach is not related only to the rapid-change model and can also be applied to the case
with finite correlation time, anisotropy, the space parity violation and, moreover, non-Gaussian
advecting field [18].
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The solution proceeds in two main stages. In the first stage, the multiplicative
renormalizability of the corresponding field theoretic model is demonstrated and the
differential RG equations for its correlation functions are obtained. The asymptotic behaviour
of the latter on their UV argument (r/ l) (l is the internal length) for r � � and any fixed
(r/L) (L is an outer length) is given by IR stable fixed points of those equations. It involves
some ‘scaling functions’ of the IR argument (r/L) whose form is not determined by the RG
equations. In the second stage, their behaviour at r � L is found from the operator product
expansion within the framework of the general solution of the RG equations. There, the
crucial role is played by the critical dimensions of various composite operators, which give
rise to an infinite family of independent scaling exponents (and hence to multiscaling). Of
course, both these stages (and thus the phenomenon of multiscaling) have long been known
in the RG theory of critical behaviour. The distinguishing feature, specific to the models of
turbulence is the existence of composite operators with the afore-mentioned negative critical
dimensions. Their contributions to the operator product expansion diverge as (r/L) → 0.
In the models of critical phenomena, nontrivial composite operators have always positive
dimensions and determine only corrections (vanishing as (r/L) → 0) to the leading terms
(finite for (r/L) → 0) in the scaling functions.

The existence of regular perturbation schemes and accurate numerical simulations allows
one to discuss, for the example of the rapid-change model and its descendants, the issues
that are interesting within the general context of fully developed turbulence: universality
and saturation of anomalous exponents, effects of compressibility, anisotropy and pressure,
persistence of the large-scale anisotropy and hierarchy of anisotropic contributions and so on.
Moreover, it is interesting and important to study the helicity (violation of space parity) effects
because many turbulence phenomena are directly influenced by them.

In [18] the problem of a passive scalar advected by the Gaussian self-similar velocity
field with finite correlation time [21] was studied by the field theoretic RG method. There, the
systematic study of the possible scaling regimes and anomalous behaviour was present at the
one-loop level. The two-loop corrections to the anomalous exponents were obtained in [22].
It was shown that the anomalous exponents are nonuniversal as a result of their dependence
on a dimensionless parameter, the ratio of the velocity correlation time and turnover time of a
scalar field.

In what follows, we shall continue with the investigation of this model from the point of
view of the influence of helicity on the scaling regimes and the anomalous exponents within
the two-loop approximation.

Helicity is defined as the scalar product of velocity and vorticity and its nonzero value
expresses mirror symmetry breaking of a turbulent flow. It plays a significant role in the
processes of magnetic field generation in electrically conductive fluid [23, 24] and represents
one of the most important characteristics of large-scale motions as well [25, 26]. Despite this
fact the role of the helicity in hydrodynamical turbulence is not completely clarified up to now.

The Navier–Stokes equations conserve kinetic energy and helicity in inviscid limit. The
presence of two quadratic invariants leads to the possibility of appearance of a double
cascade. It means that cascades of energy and helicity take place in different ranges of
wave numbers analogously to the two-dimensional turbulence and/or the helicity cascade
appears concurrently to the energy one in the direction of small scales [27, 28]. Particularly,
a helicity cascade is closely connected with the existence of exact relation between triple and
double correlations of velocity known as the ‘2/15’ law analogously to the ‘4/5’ Kolmogorov
law [29]. The afore-mentioned scenarios of turbulent cascades corresponding to [27] differ
from each other by spectral scaling. Theoretical arguments given by Kraichnan [30] and
results of numerical calculations of Navier–Stokes equations [31] support the scenario of
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concurrent cascades. The appearance of helicity in a turbulent system leads to constraint of
nonlinear cascade to the small scales. This phenomenon was firstly demonstrated by Kraichnan
[30] within the modelling problem of statistically equilibrium spectra and later in numerical
experiments.

Turbulent viscosity and diffusivity, which characterize influence of small-scale motions
on heat and momentum transport, are basic quantities investigated in the theoretic and applied
models. The constraint of direct energy cascade in helical turbulence has to be accompanied
by a decrease of turbulent viscosity. However, no influence of helicity on turbulent viscosity
was found in some works [32, 33], but, we want to stress that calculations were made
only in the lowest (one-loop) nontrivial approximation. A similar situation is observed for
turbulent diffusivity in helical turbulence. Although the modelling calculations demonstrate
intensification of turbulent transfer in the presence of helicity [34], direct calculation of
diffusivity does not confirm this effect [35, 36]. Helicity is the pseudoscalar quantity; hence,
it can be easily understood that its influence appears only in quadratic and higher terms
of perturbation theory or in the combination with other pseudoscalar quantities (e.g., large-
scale helicity). Really, simultaneous consideration of memory effects and second order
approximation indicate an effective influence of helicity on turbulent viscosity [37] and
turbulent diffusivity [34, 38, 39] already in the limit of small or infinite correlation time.

Helicity, as we shall see below, does not affect known results in the one-loop approximation
and, therefore, it is necessary to turn to the second order (two-loop) approximation to be able
to analyse possible consequences. It is also important to say that in the framework of the
classical Kraichnan model, i.e., the model of passive advection by the Gaussian velocity field
with δ-like correlations in time, it is not possible to study the influence of the helicity because
all potentially ‘helical’ diagrams are identically equal to zero at all orders in the perturbation
theory. In this sense, the investigation of the helicity in the present model can be considered
as the first step to analyse the helicity in genuine turbulence.

2. Field theoretic description of the model

The advection of a passive scalar field θ(x) ≡ θ(t, x) in helical turbulent environment is
described by the stochastic equation

∂tθ + vi∂iθ = ν0�θ + f, (1)

where ∂t ≡ ∂/∂t , ∂i ≡ ∂/∂xi , ν0 is the molecular diffusivity coefficient (hereafter all
parameters with a subscript 0 denote bare parameters of unrenormalized theory; see below),
� ≡ ∂2 is the Laplace operator, vi ≡ vi(x) is the ith component of the divergence-free (owing
to the incompressibility) velocity field v(x), and f ≡ f (x) is an artificial the Gaussian random
noise with zero mean and correlation function

〈f (x)f (x ′)〉 = δ(t − t ′)C(r/L), r = x − x′, (2)

where L denotes an integral (outer) scale. It maintains the steady-state of the system but the
detailed form of the function C(r/L) is unessential in our consideration. In spite of the fact that
in real problems the velocity field v(x) satisfies the Navier–Stokes equation, in what follows,
we suppose that the statistics of velocity field is given in the form of Gaussian distribution
with zero mean and correlator

〈vi(x)vj (x
′)〉 =

∫
dω ddk

(2π)d+1
P

ρ

ij (k)Dv(ω, k) exp[−iω(t − t ′) + ik(x − x′)], (3)

with

Dv(ω, k) = D0k
4−d−2ε−η

(iω + u0ν0k2−η)(−iω + u0ν0k2−η)
, (4)
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where k = |k|,D0 = g0ν
3
0 is a positive amplitude factor, g0 plays the role of the coupling

constant of the model, an analogue of the coupling constant λ0 in the λ0ϕ
4 model of critical

behaviour [12, 13]. In addition, g0 is a formal small parameter of the ordinary perturbation
theory. The positive exponents ε and η (ε = O(η)) are small RG expansion parameters, the
analogues of the parameter ε = 4 − d in the λ0ϕ

4 theory. Thus we have a kind of double
expansion model in the ε −η plane around the origin ε = η = 0. The correlator (4) is directly
related to the energy spectrum via the frequency integral [18]

E(k) 	 kd−1
∫

dω Dv(ω, k) 	 g0ν
2
0

u0
k1−2ε. (5)

Therefore, the coupling constant g0 and the exponent ε describe the equal-time velocity
correlator or, equivalently, energy spectrum. On the other hand, the constant u0 and the
second exponent η are related to the frequency ω 	 u0ν0k

2−η which characterizes the mode
k [40]. Thus, in our notation, the value ε = 4/3 corresponds to the well-known Kolmogorov
‘five-thirds law’ for the spatial statistics of velocity field, and η = 4/3 corresponds to the
Kolmogorov frequency. For completeness, we remain d-dependence in expressions (3) and
(4) (d is the dimensionality of the x space), although, of course, when one investigates system
with helicity the dimension of the x space must be strictly equal to three. To include helicity
the transverse projector P

ρ

ij (k) is taken in the form

P
ρ

ij (k) = Pij (k) + Hij (k) = δij − kikj /k2 + iρεijl

kl

k
. (6)

Here Pij (k) = δij − kikj /k2 represents the non-helical part of the total transverse projector
P

ρ

ij (k). On the other hand, Hij (k) = iρεij lkl/k mimics the presence of helicity in the flow.
Thus, formally, the transition to the helical fluid corresponds to the breaking of spatial parity,
and, technically, this is expressed by the fact that the correlation function is specified in the form
of mixture of a true tensor and a pseudotensor. The tensor εijl is completely antisymmetric
tensor of rank 3 and the real parameter ρ characterizes the amount of helicity. Due to the
requirement of positive definiteness of the correlation function the absolute value of ρ must
be in the interval |ρ| ∈ 〈0, 1〉. The nonzero helical part proportional to ρ physically expresses
the existence of nonzero correlations 〈v · rot v〉.

The general model (3), (4) contains two important special cases: a rapid-change model
limit when u0 → ∞ and g′

0 ≡ g0
/
u2

0 = const, Dv(ω, k) → g′
0ν0k

−d−2ε+η, and a quenched
(time-independent or frozen) velocity field limit which is defined by u0 → 0 and g′′

0 ≡ g0/u0 =
const,Dv(ω, k) → g′′

0ν
2
0πδ(ω)k−d+2−2ε, which is similar to the well-known models of the

random walks in random environment with long range correlations (see, e.g. [41, 42]).
Using Martin–Siggia–Rose mechanism [43–46] the stochastic problem (1)–(4) can be

treated as a field theory with action functional

S(θ, θ ′, v) = θ ′Dθθ
′/2 + θ ′[−∂t + ν0� − (vi∂i)]θ − vD−1

v v
/

2, (7)

where θ ′ is an auxiliary scalar field, and Dθ and Dv are correlators (2) and (3), respectively.
In the action (7) all the required integrations over x = (t, x) and summations over the vector
indices are understood. The first four terms in equation (7) represent the Dominicis–Jansen-
type action for the stochastic problem (1), (2) at fixed v, and the last term represents the
Gaussian averaging over v.

The model (7) corresponds to a standard Feynman diagrammatic technique with the bare
propagators 〈θθ ′〉0 and 〈vivj 〉0 (in the momentum–frequency representation)

〈θ(ω, k)θ ′(ω, k)〉0 = 1

−iω + ν0k2
, 〈vi(ω, k)vj (ω, k)〉0 = P

ρ

ij (k)Dv(ω, k), (8)
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〈 〈

〈 〈

Figure 1. (Left) Graphical representations of the needed propagators of the model. (Right) The
triple (interaction) vertex of the model. The momentum k is entering into the vertex via field θ ′.

where Dv(ω, k) is given directly by (4). In the Feynman diagrams, these propagators are
represented by the lines which are shown in figure 1 (the end with a slash in the propagator
〈θθ ′〉0 corresponds to the field θ ′, and the end without a slash corresponds to the field θ ). The
triple vertex (or interaction vertex) −θ ′vj∂j θ = θ ′vjVj θ , where Vj = ikj (in the momentum–
frequency representation), is presented in figure 1, where the momentum k is flowing into the
vertex via the auxiliary field θ ′.

3. Renormalization group analysis

The model (7) is logarithmic for ε = η = 0 (the coupling constant g0 is dimensionless) and,
in this case, possible ultraviolet (UV) divergences have the form of poles in various linear
combinations of ε and η in the correlation functions. The reader can find a detailed description
of how to apply the procedure of elimination of UV divergencies and use the technique of
renormalization group in the theory of developed turbulence in books [13, 15]. Using the
standard analysis of quantum field theory one finds that all divergences can be removed by the
only counterterm of the form θ ′�θ [18]. Thus, the model is multiplicatively renormalizable,
which is expressed explicitly in the multiplicative renormalization of the parameters g0, u0

and ν0 in the form

ν0 = νZν, g0 = gµ2ε+ηZg, u0 = uµηZu. (9)

Here the dimensionless parameters g, u and ν are the renormalized counterparts of the
corresponding bare ones, µ is the renormalization mass (a scale setting parameter), an artefact
of dimensional regularization. Newly introduced quantities Zi = Zi(g, u; d, ρ; ε, η) =
Zi(g, u; d, ρ; ε) are renormalization constants (note that if ρ is nonzero then d = 3) and, in
general, contain poles of linear combinations of ε and η. However, as detailed analysis shows,
to obtain all important quantities as the γ -functions, β-functions, coordinates of fixed points,
and the critical dimensions, the knowledge of the renormalization constants for the special
choice η = 0 is sufficient up to two-loop approximation (see details in [18]).

The renormalized action functional has the following form:

SR(θ, θ ′, v) = θ ′Dθθ
′/2 + θ ′[−∂t + νZ1� − (v∂)]θ − vD−1

v v
/

2, (10)

where the correlator Dv is written in renormalized parameters. By comparison of the
renormalized action (10) with definitions of the renormalization constants Zi , i = g, u, ν

(9) one comes to the relations among them:

Zν = Z1, Zg = Z−3
ν , Zu = Z−1

ν . (11)

The second and third relations are consequences of the absence of the renormalization of
the term with Dv in renormalized action (10). The parameter ρ as the fields θ, θ ′, v are not
renormalized; therefore Zρ = Zθ = Zθ ′ = Zv = 1.
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The issue of interest is, in particular, the behaviour of the equal-time structure functions

Sn(r) ≡ 〈[θ(t, x) − θ(t, x′)]n〉, r ≡ |r| = |x − x′| (12)

in the inertial range, specified by the inequalities l � r � L (l is the internal length). Here
parentheses � mean the functional average over the fields θ, θ ′, v with the weight exp(SR).

In the isotropic case, the odd functions S2n+1 vanish, while for S2n simple dimensionality
considerations give

S2n(r) = ν−n
0 r2nR2n(r/ l, r/L, g0, u0, ρ), (13)

where R2n are some functions of dimensionless variables. In principle, they can be calculated
within the ordinary perturbation theory (i.e., as series in g0), but this is not useful for studying
inertial-range behaviour: the coefficients are singular in the limits r/ l → ∞ and/or r/L → 0,
which compensate the smallness of g0, and in order to find correct infrared behaviour we have
to sum the entire series. The desired summation can be accomplished using the field theoretic
renormalization group (RG) and operator product expansion (OPE)(see [14, 16, 18] for details).

The RG analysis consists of two main stages. In the first stage, the multiplicative
renormalizability of the model is demonstrated and the differential RG equations for its
correlation (structure) functions are obtained. The asymptotic behaviour of the functions like
(12) for r/ l � 1 and any fixed r/L is given by IR stable fixed points g∗, u∗ (see below) of the
RG equations and has the form

S2n(r) = ν−n
0 r2n(r/ l)−γnR2n(r/L, ρ), r/ l � 1 (14)

with certain, as yet unknown, scaling functions R2n(r/L, ρ) ≡ R2n(1, r/L, g∗, u∗, ρ). In the
theory of critical phenomena [12, 13] the quantity �[S2n] ≡ −2n + γn is termed the critical
dimension, and the exponent γn, the difference between the critical dimension �[S2n] and the
canonical dimension −2n, is called the anomalous dimension.

In the second stage, the small r/L behaviour of the functions R2n(r/L, ρ) is studied
within the general representation (14) using the operator product expansion (OPE). It shows
that, in the limit r/L → 0, the functions R2n(r/L, ρ) have the asymptotic forms

R2n(r/L) =
∑
F

CF (r/L)(r/L)�n, (15)

where CF are coefficients regular in r/L. In general, the summation is implied over certain
renormalized composite operators F with critical dimensions �n. In case under consideration
the leading operators F have the form Fn = (∇iθ∇iθ)n.

We have performed the complete two-loop calculation of the critical dimensions of the
composite operators Fn for arbitrary values of n, d, u and ρ and obtain them in the following
form:

�n = �(1)
n ε + �(2)

n ε2, �(1)
n = −n(n − 2)(d − 1)

2(d − 1)(d + 2)
, (16)

where �(1)
n is critical dimension obtained in the one-loop approximation. Interesting technical

details of these two-loop calculations will be present elsewhere.
Two-loop contribution �(2)

n is rather cumbersome and can be found in [22]. The main
and interesting result consists in the fact that although separated two-loop Feynman graphs
of operators Fn strongly depend on the helicity parameter ρ, such dependence disappears
in their sum, which gives rise to the critical dimensions �n. We can conclude that in the
two-loop approximation anomalous scaling with negative exponents (16) is not affected by the
existence of nonzero helical correlations 〈vrotv〉 in turbulent incompressible flow. It turns out,
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+ +

Figure 2. The one- and two-loops contributions to the self-energy operator �.

however, that region of stability of possible asymptotic regimes governed by fixed points of
RG equations, where anomalous scaling takes place, and effective diffusivity strongly depends
on ρ.

Let us analyse asymptotic regimes in detail. The structure functions and the other
statistical averages of random fields θ, θ ′ satisfy linear differential RG equations with the
linear differential operator DRG:

DRG = Dµ + βg(g, u)∂g + βu(g, u)∂u − γν(g, u)Dν . (17)

HereDx ≡ x∂x stands for any variable x and the RG functions (the β and γ functions) are given
by well-known definitions and in our case, using the relations (11) for the renormalization
constants, they acquire the following form:

γν ≡ D̃µ ln Zν, (18)

βg ≡ D̃µg = g(−2ε − η + 3γν), (19)

βu ≡ D̃µu = u(−η + γν). (20)

The renormalization constant Zν is determined by the requirement that the response function
G ≡ 〈θθ ′〉 must be UV finite when is written in renormalized variables. In our case it means
that it has no singularities in the limit ε, η → 0. The response function G is related to the
self-energy operator �, which is expressed via Feynman graphs, by the Dyson equation. In
frequency–momentum representation it has the following form:

G(ω, p) = 1

−iω + ν0p2 − �(ω, p)
. (21)

Thus, Zν is found from the requirement that the UV divergences are cancelled in (21) after
substituting ν0 = νZν . This determines Zν up to an UV finite contribution, which is fixed by
the choice of the renormalization scheme. In the MS scheme all the renormalization constants
have the form: 1 + poles in ε, η and their linear combinations. In contrast to the rapid-change
model, where only one-loop diagram exists (it is related to the fact that all higher-order loop
diagrams contain at least one closed loop which is built on by only retarded propagators, thus
are automatically equal to zero), in the case with finite correlations in time of the velocity field,
higher-order corrections are nonzero. In the two-loop approximation the self-energy operator
� is defined by diagrams which are shown in figure 2.

As was already mentioned, in our calculations we can put η = 0. This possibility
essentially simplifies the evaluations of all quantities [18, 22].

Two-loop calculations of divergent parts of diagrams in figure 2 give the renormalization
constant Zν and anomalous dimension γν (18) in the form:

Zν = 1 +
g

ε
A +

g2

ε
B +

g2

ε2
C, γν = −2(gA + 2g2B). (22)
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Here A = (1 − d)/(2d(1 + u)) is the one-loop contribution to the constant Zν and anomalous
dimension γν and the two-loop ones are

B = (d − 1)(d + u)

4d2(d + 2)(1 + u)5
· 2F1

(
1, 1; 2 +

d

2
; 1

(1 + u)2

)

− πρ2

36(1 + u)3
· 2F1

(
1

2
,

1

2
; 5

2
; 1

(1 + u)2

)
, (23)

C = − (d − 1)2

d2

1

8(1 + u)3
,

where

2F1(a, b, c, z) = 1 +
ab

c · 1
z +

a(a + 1)b(b + 1)

c(c + 1) · 1 · 2
z2 + · · ·

represents the hypergeometric function. We substitute d = 3 in the helical part (proportional
to the ρ), but for completeness we remain the d-dependence in the non-helical one. In addition
we have introduced the new notation g = gSd/(2u(2π)d) (Sd = 2πd/2/�(d/2) denotes the
d-dimensional sphere).

From the expressions (18)–(20) and (22) we are able to find and classify all fixed points
g∗, u∗ which satisfy equations:

βg(g∗, u∗) = βu(g∗, u∗) = 0. (24)

To investigate the infrared stability of a fixed point it is enough to analyse the eigenvalues of
the 2 × 2 matrix � of first derivatives: �ij = ∂βgi

/
∂gj (gi ≡ g, u). The anomalous scaling is

governed by the infrared stable fixed points, i.e., those for which both eigenvalues �1,�2 are
non-negative.

Classification and detailed analysis of all fixed points, determination of region of their
stability and influence of helicity will be presented elsewhere. Here we confine ourselves
to the most interesting IR stable fixed point, where both parameters g∗, u∗ acquire nontrivial
values at η = ε:

g∗ = (
(g(1)

∗ +
(
g(2)

∗ + g(3)
∗ ρ2

)
ε
)
ε, g(1)

∗ = 3

2
(1 + u∗),

g(2)
∗ = 3(3 + u∗)

20(1 + u∗)2
· 2F1

(
1, 1; 7

2
; 1

(1 + u∗)2

)
, (25)

g(3)
∗ = −3π

8
· 2F1

(
1

2
,

1

2
; 5

2
; 1

(1 + u∗)2

)
.

Actually, equation (25) represents a line of fixed points in g − u plane. The competition
between helical and non-helical terms appears which yields a nontrivial restriction for the
fixed point values of variable u to have positive fixed values for variable g.

The first eigenvalue of the stability matrix �ij vanishes and the second one �2 is

�2 = 2 + u∗
1 + u∗

ε +
ε2

140(1 + u∗)4

[
8u∗(3 + u∗)
(1 + u∗)2 2F1

(
2, 2; 9

2
; 1

(1 + u∗)2

)
+ 14(u∗(3 + u∗) − 6)

2F1

(
1, 1; 7

2
; 1

(1 + u∗)2

)
+ 7πρ2

(
10(1 + u∗)2

(
1

2
,

1

2
; 5

2
; 1

(1 + u∗)2

)

−u∗

(
3

2
,

3

2
; 7

2
; 1

(1 + u∗)2

))]
(26)

with the nontrivial helical part which plays an important role in determination of the region of
the IR stability of the fixed point.
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4. Effective diffusivity

One of the interesting object from the theoretical as well as experimental point of view is the
so-called effective diffusivity ν̄. In this section let us briefly investigate the effective diffusivity
ν̄, which replaces the initial molecular diffusivity ν0 in (1) due to the interaction of the scalar
field θ with the random velocity field v. The molecular diffusivity ν0 governs exponential
damping in time of all fluctuations in the system in the lowest approximation, which is given
by the propagator (response function) (8). Analogously, the effective diffusivity ν̄ governs
exponential damping of all fluctuations described by the full response function, which is
defined by the Dyson equation (21). Its explicit expression can be obtained by the RG
approach. In accordance with general rules of the RG (see, e.g. [13]) all principal parameters
of the model g0, u0 and ν0 are replaced by their effective (running) counterparts, which satisfy
the RG flow equations

s
dḡ

ds
= βg(ḡ, ū), s

dū

ds
= βu(ḡ, ū) s

dν̄

ds
= −ν̄γν(ḡ, ū) (27)

with initial conditions ḡ|s=1 = g, ū|s=1 = u, ν̄|s=1 = ν. Here s = k/µ, β and γ functions
are defined in (18)–(20) and the running parameters ḡ, ū and ν̄ clearly depend on the variable
s. Due to special form of β-functions (19), (20) we are able to solve the last equation (27)
analytically. Using the first equation (27) and (19) one immediately rewrites the equation for
effective diffusivity in the form

dν̄

ν̄
= γν

2ε + η − 3γν

dḡ

ḡ
(28)

which can be easily integrated. Using initial conditions the solution acquires the form:

ν̄ =
(

gν3

ḡs2ε+η

)1/3

=
(

D0

ḡk2ε+η

)1/3

. (29)

We emphasize that the above solution is exact, i.e., the exponent 2ε + η is exact too. However,
in the infrared region k � µ ∼ l−1, ḡ → g∗, which can be calculated only perturbatively. In
the two-loop approximation g∗ = g

(1)
∗ ε + (g

(2)
∗ + g

(3)
∗ )ε2 and after the Taylor expansion of g

1/3
∗

in (29) we obtain

ν̄ ≈ ν∗

(
D0

g
(1)
∗ ε

)1/3

k− 2ε+η

3 , ν∗ ≡ 1 − (g
(2)
∗ + g

(3)
∗ )ε

3g
(1)
∗

. (30)

Remind that for Kolmogorov values ε = η = 4/3 the exponent in (30) becomes equal to
−4/3. Let us estimate the contribution of helicity to the effective diffusivity in the fixed point
(25). Taking into account at this point ε = η((2ε + η)/3 = ε) and using the expression (25)
the amplitude ν∗ in (30) acquires the following form:

ν∗ = 1 − ε

[(
(3 + u∗)

30(1 + u∗)3
· 2F1

(
1, 1; 7

2
; 1

(1 + u∗)2

)

− πρ2

12(1 + u∗)
· 2F1

(
1

2
,

1

2
; 5

2
; 1

(1 + u∗)2

)]
. (31)

In figure 3, the dependence of the ν∗ on the helicity parameter ρ and the IR fixed point u∗
for the Kolmogorov value of parameter ε is shown . As one can see from these figures when
u∗ → ∞ (the rapid change model limit) the two-loop corrections to ν∗ = 1 are vanishing.
Such behaviour is related to the fact that within the rapid change model there are no two and
higher loop corrections at all. On the other hand, the largest two-loop corrections to the ν∗ are
given in the frozen velocity field limit (ν∗ → 0).
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Figure 3. (Left) The dependence of ν∗ on the helicity parameter ρ for definite IR fixed point values
u∗ of the parameter u. (Right) The dependence of ν∗ on the IR fixed point u∗ for the concrete
values of the helicity parameter ρ. The value ρc = 4/

√
3. It is a special value related to the

analysis of the stability of the scaling regime which is not discussed here.

Finally, let us analyse time behaviour of the retarded response function G ≡ 〈θθ ′〉 in the
limit t → ∞.

In frequency–wave vector representation G(ω, p) satisfies the Dyson equation (21). the
self-energy operator � is expressed via multi-loop Feynman graphs and can be calculated
perturbatively. We have found its divergent part up to the two-loop approximation and
calculated its finite part with the one-loop precision.

Using the Dyson equation we find the response function in the time–wave vector
representation:

G(t, p) =
∫

dω

2π
e−iωtG(ω, p) =

∫
dω

2π

e−iωt

−iω + ν0p2 − �(ω, p)
. (32)

In the lowest approximation �(ω, p) = 0; thus the integral can be easily calculated:
G0(t, p) = θ(t) exp(−iωrt). Here θ(t) denotes the usual step function and ωr is a residuum
in complex plain ω in point −iν0p

2. According to [47], where analogical problems have been
analysed for turbulent viscosity, we suppose that this situation remains the same for the full
response function G; i.e., the leading contribution to its asymptotic behaviour for t → ∞ is
determined by the residuum ω = ωr , which corresponds to the smallest root of the dispersion
relation

G−1(ω, p) = −iωr + ν0p
2 − �(ωr, p) = 0. (33)

It is advantageous to rewrite the last relation in the dimensionless form:

1 − z − I (1, z) = 0, z ≡ iωr

ν0p2
, I (1, z, g) ≡ �(ω, p)

ν0p2
, (34)

which after renormalization can be rewritten in the fixed point g∗ (25) as follows:

1 − z∗ − I∗ = 0, z∗ ≡ iωr

ν̄p2
, (35)

where ν̄ is effective diffusivity (30) and I∗ ≡ I∗(1, z∗, g∗) is the renormalized (finite) part of
the dimensionless self-energy operator I at the fixed point g∗.
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Hence decay law G0(t, p) ∼ exp(−ν0p
2t) is changed into

G(t, p) ∼ exp(−iωrt) = exp(−z∗ν̄p2t) t → ∞. (36)

To find the residuum ωr (or, equivalently, z∗) it is necessary to calculate quantity I∗. In the
one-loop (linear in ε) approximation it can be written in the form:

I∗ = −g∗
∫ 1

−1
(1 − x2)

d−1
2 dx I (37)

with

I =
∫ ∞

0
dk

[
k

1 − z∗ + (1 + u∗)k2 − 2kx
− θ(k − 1)

(1 + u∗)k

]
. (38)

Generally, the root z∗ can be complex and in the one-loop approximation it has the form

z∗ = z∗
1 + iz2, z∗

1 = 1 + x1ε, z∗
2 = x2ε. (39)

With our guaranteed precession I∗ is linear in ε, therefore on the first sight it seems that
in the last integral it is enough to take z∗ = 1 (g∗ ∼ ε), but, actually, for its correct calculation
we need to remain the imaginary part x2ε. Then the integral (38) can be easily calculated by
means of Sokhotsky’s formula:

lim
ε→0+

1

y ± iε
= ∓iπδ(y) + P

(
1

y

)
, (40)

where P
(

1
y

)
denotes the principal value of the integral. Integration over the angle x gives the

final result for the dimensionless self-energy operator I∗:

I∗ = − g∗
(1 + u∗)

(√
π�(d + 1)

(
γ + ψ

(
1 + d

2

)
+ 2 ln |1 + u∗|

)
d2d�

(
d−1

2

)
�

(
d
2 + 1

) ± iπ
d − 1

2d

)
, (41)

where γ is Euler’s constant and ψ(z) is the digamma function defined as ψ(z) = �′(z)/�(z).
Successful calculation of integral I allows one to determine the residue z∗ (39).

Comparison of real and complex parts of both sides of (35) gives the following terms in
real space d = 3 and in the fixed point g∗ = 3(1 + u∗)/2 (see (25))

x1 = 8

3
+ 2 ln

1 + u∗
2

, x2 = ±π

2
. (42)

Due to the existence of two complex conjugate values z∗ the response function G(t, p2)

can be written in the asymptotic limit t → ∞ in the following final form:

G(t, p2) ∼= e−νeffp
2−ε t sin(νf p2−εt), (43)

where

νeff ≡
[

1 − ε

[
8

3
+ 2 ln

1 + u∗
2

+
(3 + u∗)

30(1 + u∗)3
· 2F1

(
1, 1; 7

2
; 1

(1 + u∗)2

)

− πρ2

12(1 + u∗)
· 2F1

(
1

2
,

1

2
; 5

2
; 1

(1 + u∗)2

)]] (
2D0

3(1 + u∗)ε

)1/3

(44)

νf ≡ πε

2

(
2D0

3(1 + u∗)ε

)1/3

.

It is clear that the exponential damping is accompanied by the oscillations.
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5. Conclusion

We have studied the advection of a scalar field by a turbulent flow in the framework of the
extended Kraichnan model and investigated the influence of helicity on anomalous scaling,
stability of asymptotic regimes and effective diffusivity. This investigation is useful for
understanding the efficiency of simplified models to study the real turbulent motions by means
of modern theoretical methods, including the renormalization group approach. Actually, we
performed two-loop calculations of the divergent parts of the Feynman graphs, which are
necessary to achieve multiplicative renormalization of an equivalent field theoretic model. We
have shown that anomalous scaling, which is typical of the Kraichnan model and its numerous
extensions [22, 48], is not violated by the inclusion of helicity in the incompressible fluid.
On the other hand, stability of asymptotic regimes, values of fixed RG points and turbulent
diffusivity strongly depend on the amount of helicity. It can be easily seen from (31) that
helicity enlarges the turbulent diffusivity and high order contributions lead to the appearance
of oscillations in the response function (32).
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